## **Chapter 22:** Protists

## **Protists**

| Chlorophytes    | Acetabularia, Chlamydomonas, Chlorella,      |
|-----------------|----------------------------------------------|
| (green algae)   | Codium, Udotea, Ulva, Volvox, Scenedesmus    |
| nos de tisto    | W WAS I HOW IN                               |
| Red algae       | Antithamnion, Porphyra                       |
| Amoebozoans     | Amoeba, Dictyostelium, Physarum              |
| Stramenopiles   |                                              |
| Chrysophytes    | Emiliania, Mischococcus, Synura              |
| Diatoms         | Thalassiosira                                |
| Brown Algae     | Laminaria, Macrocystis, Postelsia, Sargassum |
| Oomycotes       | Phytophthora, Plasmopara, Saprolegnia        |
| Alveolates      |                                              |
| Ciliates        | Didinium, Paramecium, Stylonychia            |
| Dinoflagellates | Gonyaulax, Gymnodinium, Karenia, Noctiluca   |
| Apicomplexans   | Plasmodium                                   |
| Foraminiferans  | Peneroplis, Spiroloculina                    |
| Radiolarians    | Pterocorys, Stylosphaera                     |
| Kinetoplastids  | Trypanosoma, Leishmania                      |
| Euglenoids      | Euglena                                      |
| Diplomonads     | Giardia                                      |
| Parabasalids    | Trichomonas, Trichonympha                    |

## **Protistans are Unlike Prokaryotes**

- Have a nucleus and organelles
- Have proteins associated with DNA
- Use microtubules in a cytoskeleton, spindle apparatus, and cilia and flagella
- May contain chloroplasts
- May divide by mitosis and meiosis

## **Difficult to Classify**

- Historically a catch-all kingdom
- Differ enormously from one another in morphology and life-styles
- Molecular and biochemical comparisons are clarifying the evolutionary picture
- Protistans are not a monophyletic group

## **Evolutionary Tree**



## **Evolutionary Tree**



## **Euglenoids: Evolutionary Puzzle**

- Some heterotrophs
- Most have chloroplasts like green algae and plants
- Have flagella like flagellated protozoans
- Related to flagellated protozoans
- Acquired chloroplasts by endosymbiosis

## **Euglenoid Body Plan**



## **Euglenoid Body Plan**





# **Euglenoid Body Plan**

© 2006 Thomson Higher Education Fig. 22-4b, p.354

## Euglenoids Are a Monophyletic Group

 Members share a common ancestor and derived traits that are present in no other group

- Unique traits
  - A storage carbohydrate
  - Type of eyespot

## **Amoeboid Protozoans (Sarcodina)**

- Move by means of cytoplasmic streaming and pseudopods
- Naked amoebas
- Foraminiferans
- Heliozoans
- Radiolarians

Rhizopods

Actinopods

#### **Naked Amoebas**

- Change shape constantly
- Most are free-living cells that engulf their prey
- Some are symbionts in animal guts
- A few are opportunistic pathogens

### **Other Amoeboid Protozoans**

- Foraminiferans
  - Calcium carbonateshell
- Radiolarians and Heliozoans
  - Shells of silica

#### A living heliozoan



## **Other Amoeboid Protozoans**



© 2006 Thomson Higher Education

## Ciliates (Ciliphora)

- All heterotrophs
- Arrays of cilia allow movement and direct food into oral cavity
- Diverse life-styles



© 2003 Brooks/Cole – Thomson Learning

**Paramecium** 

#### **Alveolates**

- Have tiny, membrane-bound sacs (alveoli) underneath their outer membranes
- Ciliates
- Sporozoans
- Dinoflagellates

## **Body Plan of Paramecium**



## **Ciliate Conjugation**

- Most ciliates have two different nuclei
  - Large macronucleus
  - Smaller micronucleus
- Micronucleus participates in sexual reproduction (conjugation)
  - Partners exchange micronuclei

### **Paramecium**





© 2006 Thomson Higher Education Fig. 22-8, p.357





b Partners physically join up, most often at their oral depression.



c The two cells undergo cytoplasmic fusion. The micronucleus of each enters meiosis I.



d Meiosis II follows and results in four haploid micronuclei. The macronucleus of each cell starts to degenerate.



e In each cell, one haploid micronucleus stays intact; the other three degenerate.



f Each haploid micronucleus divides. Each cell will swap a daughter micronucleus with its partner.



@ 2006 Thomson Higher Education

g Two micronuclei in each cell fuse, forming a diploid micronucleus. Each cell now contains genetic material from the other.



© 2006 Thomson Higher Education

h The conjugating cells disengage. The micronucleus of each divides.



© 2006 Thomson Higher Education

i Micronuclei in each cell divide. Then the original macronucleus degenerates.



j Each cell now has four micronuclei.



© 2006 Thomson Higher Education

k Of the four micronuclei, two develop into macronuclei.



I Cytoplasmic division now begins, and two cells form.



© 2006 Thomson Higher Education

m Each daughter cell contains one micronucleus and one macronucleus.



© 2006 Thomson Higher Education

Fig. 22-8n, p.357

## **Flagellated Protozoans**

- Have one or more flagella
- All are heterotrophs
- Euglenoids
- Kinetoplastids (include trypanosomes)
- Parabasalids (include trichomonads)
- Diplomonads (include Giardia)



# Flagellated Protozoans

© 2006 Brooks/Cole - Thomson



# Flagellated Protozoans

© 2006 Thomson Higher Education Fig. 22-9b, p.358

### Pfiesteria piscicida

- Associated with large fish kills
- Complicated life cycle
- Population explosions tied to water pollution





#### Dinoflagellates

- Most are single photosynthetic cells
- Important component of phytoplankton
- Each has two flagella
- Algal bloom is population explosion of dinoflagellates

#### **Apicomplexans**

- Parasitic
- Complete part of the life cycle inside specific cells of a host organism
- Many have elaborate life cycles that require different hosts
- Many cause serious human disease



© 2006 Brooks/Cole - Thomson

#### Malaria

- Most prevalent in tropical and subtropical parts of Africa
- Kills a million Africans each year
- Caused by four species of Plasmodium
- Transmitted by Anopheles mosquitoes

### Plasmodium Life Cycle





© 2006 Thomson Higher Education

#### **Toxoplasma**

- Cysts may be ingested with raw or undercooked meat
- Exposure to cysts from cat feces
- Symptoms are usually mild in people with normal immune function
- Infection during pregnancy can kill or damage the embryo

#### **Stramenopiles**

- Unique trait is one of their two flagella has thin filaments projecting from it
- Cells have four outer membranes
- Include
  - Oomycotes
  - Chrysophytes
  - Brown algae

### **Chrysophytes (Chrysophyta)**

- Mainly free-living photosynthetic cells
- Contain chlorophylls a,  $c_1$ , and  $c_2$
- Four groups:
  - Golden algae

- Diatoms
- Yellow-green algae Coccolithophores

## Chrysophytes (Chrysophyta)



© 2006 Thomson Higher Education

#### **Diatoms**

- Major component of the phytoplankton
- Silica shell of two overlapping parts
- Sediments rich in diatom remains quarried for many uses



#### Coccolithophores

- Major component of the phytoplankton
- Calcium carbonate shell

 Remains in chalk and limestone deposits



**Coccolithophore shell** 

#### **Brown Algae (Phaeophyta)**



- 1,500 species
- Most abundant in temperate seas
- Contain chlorophylls a and c, and fucoxanthin
- Range in size from tiny filaments to giant kelps

## **Brown Algae (Phaeophyta)**



© 2006 Thomson Higher Education



# Brown Algae (Phaeophyta)

© 2006 Brooks/Cole - Thomson

### Red Algae (Rhodophyta)

- 4,100 species
- Most abundant in tropical seas
- Can grow at great depths (phycobilins)
- Complex life cycles may include very different forms

## Red Algae



- 7,000 species
- Resemble plants
  - Chlorophylls a and b
  - Starch grains in chloroplasts
  - Cell walls of cellulose, pectins



Ulva



© 2006 Thomson Higher Education



© 2006 Thomson Higher Education



@ 2006 Thomson Higher Education



© 2006 Thomson Higher Education

## Amoeba



## Amoeba



© 2006 Thomson Higher Education

| Table 22.1 Comparison of Prokaryotes With Eukaryotes |                                                                 |                                                                                                                                     |
|------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
|                                                      | Prokaryotes                                                     | Eukaryotes                                                                                                                          |
| Organisms represented:                               | Archaeans, bacteria                                             | "Protists," plants, fungi, and animals                                                                                              |
| Ancestry:                                            | Two major lineages that evolved more than 3.5 billion years ago | Equally ancient prokaryotic ancestors gave rise to forerunners of eukaryotes, which evolved more than 1.2 billion years ago         |
| Level of organization:                               | Single-celled                                                   | Single-celled or multicelled with a division of labor among specialized cells; complex species have tissues and organ systems       |
| Typical cell size:                                   | Small (1-10 micrometers)                                        | Large (10-100 micrometers)                                                                                                          |
| Cell wall:                                           | Most with no distinctive wall                                   | Cellulose or chitin; none in animal cells                                                                                           |
| Membrane-bound organelles:                           | Rarely; no nucleus, no mitochondria                             | Typically profuse; nucleus present; most with mitochondria                                                                          |
| Modes of metabolism:                                 | Both anaerobic and aerobic                                      | Aerobic modes predominate                                                                                                           |
| Genetic material:                                    | One chromosome; plasmids in some                                | Chromosomes of DNA plus many associated proteins in a nucleus                                                                       |
| Mode of cell division:                               | Prokaryotic fission, mostly; some reproduce by budding          | Nuclear division (mitosis, meiosis, or both) associated with one of various modes of cytoplasmic division, including binary fission |

© 2006 Thomson Higher Education



Fig. 22-25, p.369